| 1 | Given that | $a \times 60 = b$ | work out the value of | $\frac{4b}{a}$ | [2 marks] | |---|------------|-------------------|-----------------------|----------------|-----------| | | | | | | | | | | | | | | | | | Answer | | | | | 2 The <i>n</i> th term of | of a sequence is | $\frac{n(n-4)}{\sqrt{n+3}}$ | |---------------------------|------------------|-----------------------------| |---------------------------|------------------|-----------------------------| Work out the sum of the 1st and 6th terms. [3 marks] Answer _____ | 3 | | A curve has the equation $y = x^2 - 6x + 17$ | | | |-------|-----|--|-----------|--| | | | The turning point of the curve is at $(a, 8)$ | | | | 3 (a) | (a) | By completing the square, or otherwise, work out the value of $\it a$. | | | | | | | | | | | | Answer | | | | 3 (b) | (b) | The turning point of the curve $y = x^2 + 4x + b$ also has y -coordinate 8 Work out the value of b . | | | | | | | [2 marks] | | | | | | | | | | | Answer | | | | 4 | $f(x) = 3x^2 - 4x + 8$ for all values of x
Jenny says, | | |---|--|----------| | | "f(10) must equal 2 \times f(5), because 10 is 2 \times 5" | | | | Is Jenny correct? | | | | Show working to support your answer. | [2 marks | | | | | | | | | | | | | | | | | | 5 | $f(x) = 2x - 3$ and $g(x) = x^2$ | | |---|----------------------------------|----------| | | Show that $f^{-1}(55) = fg(4)$ | [4 marks | 6 | (a) | f(x) = cx + d | |---|-----|---------------| |---|-----|---------------| $$f(10) = 22$$ Work out the values of c and d. | Work out the values of c and d . | [3 marks | |--------------------------------------|----------| c = _____ d = ____ | 7 | L is directly proportional to D^2 | | |-------|--|-----------| | 7 (a) | L=85 when $D=10$ Work out an equation connecting L and D . | [3 marks] | | | | | | | | | | | | | | | Answer | | | 7 (b) | Work out the value of L when $D=5$ | [2 marks] | | | | | | | | | $$\frac{a}{b} = 3c$$ $$\frac{b}{c} = 2$$ Work out the value of a when c = 8 [3 marks] Answer _____ - **9** The equation of a curve is $y = 16^x$ - A different point on the curve has y-coordinate $\frac{1}{16}$ Work out the x-coordinate. [1 mark] Answer _____ | 1 | 0 | f | (x) |) = | 2 <i>x</i> | + | Ę | |---|---|---|-----|-----|-------------------|---|---| | - | • | | vv. | , | | | • | | Show that | $3f(x) - 12f^{-1}(x)$ | simplifies to an integer. | [4 marks] | |-----------|-----------------------|---------------------------|-----------| 11 Here are two simultaneous equations. $$y = x^2 + 7x - c$$ and $$y = 3x + d$$ There is a solution when x = 5 Work out the value of c + d | voix out the value of \(\epsilon\) i a | [3 marks] | |--|-----------| | | į mamo, | Answer | 12 | (a) | $f(x) = kx^2$ | where k is a constant. | |----|-----|---------------|--------------------------| | | | | | Kai says that $$\frac{f(6)}{f(2)}$$ is equal to f(3) because $\frac{6}{2} = 3$ Is he correct? | Show working | g to su | pport you | ır answer. | |--------------|---------|-----------|------------| | Show working to support your answer. | [2 marks] | |--------------------------------------|-----------| | | | | | | | | | | | | | | | | 13 | $f(x) = x^2 + 6x$ | |----|-------------------| | | g(x) = 2x + 4 | | 13 | (a) | Solve | fg(x) = -5 | |----|-------------------|-------|------------| | | \ - -/ | 00.10 | 19(2) — 0 | | • , | [3 marks] | |-----|-----------| Answer 14 $$f(x) = \frac{3x+9}{5}$$ and $g(x) = 6x-1$ | 14 | (a) | Show that gf(2) is an integer | -r | |----|-----|-------------------------------|------------| | 17 | (a) | onow that gitz) is an integer | 7Ι. | |
[2 marks] | |---------------| 14 (b) | Show that f | ⁻¹ (8) is not ar | n integer. | |--------|-------------|------------------------------------|------------| |--------|-------------|------------------------------------|------------| | [2 marks] | |-----------| 15 | H is inversely proportional to the cube root of L . | | | |--------|---|----------|--| | | H=7 when $L=64$ | | | | 15 (a) | Work out the value of H when $L=2744$ | [2 marks | $H = \underline{\hspace{1cm}}$ A room is kept at a constant temperature of 21°C for 6 hours. The heating is then turned off and the room begins to cool. Here is a sketch graph showing the temperature, $y^{\circ}C$, of the room at time x hours. **16 (a)** Assume the equation of the curved part is $y = \frac{k}{r}$ where k is a constant. Work out the value of y when x = 12 [2 marks] | y = | | | | |-----|--|--|--| | | | | | | 16 (b) | In fact, | |--------|----------| |--------|----------| $y = A \times \left(\frac{1}{3}\right)^{\frac{1}{6}x}$ where A is a **different** constant. the equation of the curved part is How does this affect the value of y when x = 12? Tick one box. You must show working to support your answer. [2 marks] | The value of y is greater than the answer to part (a). | |--| | The value of y is less than the answer to part (a). | | The value of y is the same as the answer to part (a). | | | | | | | | | | | | |