1	Given that	$a \times 60 = b$	work out the value of	$\frac{4b}{a}$	[2 marks]
		Answer			

2 The <i>n</i> th term of	of a sequence is	$\frac{n(n-4)}{\sqrt{n+3}}$
---------------------------	------------------	-----------------------------

Work out the sum of the 1st and 6th terms.

[3 marks]

Answer _____

3		A curve has the equation $y = x^2 - 6x + 17$		
		The turning point of the curve is at $(a, 8)$		
3 (a)	(a)	By completing the square, or otherwise, work out the value of $\it a$.		
		Answer		
3 (b)	(b)	The turning point of the curve $y = x^2 + 4x + b$ also has y -coordinate 8 Work out the value of b .		
			[2 marks]	
		Answer		

4	$f(x) = 3x^2 - 4x + 8$ for all values of x Jenny says,	
	"f(10) must equal 2 \times f(5), because 10 is 2 \times 5"	
	Is Jenny correct?	
	Show working to support your answer.	[2 marks

5	$f(x) = 2x - 3$ and $g(x) = x^2$	
	Show that $f^{-1}(55) = fg(4)$	[4 marks

6	(a)	f(x) = cx + d
---	-----	---------------

$$f(10) = 22$$

Work out the values of c and d.

Work out the values of c and d .	[3 marks

c = _____ d = ____

7	L is directly proportional to D^2	
7 (a)	L=85 when $D=10$ Work out an equation connecting L and D .	[3 marks]
	Answer	
7 (b)	Work out the value of L when $D=5$	[2 marks]

$$\frac{a}{b} = 3c$$

$$\frac{b}{c} = 2$$

Work out the value of a when c = 8 [3 marks]

Answer _____

- **9** The equation of a curve is $y = 16^x$
- A different point on the curve has y-coordinate $\frac{1}{16}$ Work out the x-coordinate.

[1 mark]

Answer _____

1	0	f	(x)) =	2 <i>x</i>	+	Ę
-	•		vv.	,			•

Show that	$3f(x) - 12f^{-1}(x)$	simplifies to an integer.	[4 marks]

11 Here are two simultaneous equations.

$$y = x^2 + 7x - c$$

and

$$y = 3x + d$$

There is a solution when x = 5

Work out the value of c + d

voix out the value of \(\epsilon\) i a	[3 marks]
	į mamo,

Answer

12	(a)	$f(x) = kx^2$	where k is a constant.

Kai says that
$$\frac{f(6)}{f(2)}$$
 is equal to f(3) because $\frac{6}{2} = 3$

Is he correct?

Show working	g to su	pport you	ır answer.

Show working to support your answer.	[2 marks]

13	$f(x) = x^2 + 6x$
	g(x) = 2x + 4

13	(a)	Solve	fg(x) = -5
	\ - -/	00.10	19(2) — 0

• ,	[3 marks]

Answer

14
$$f(x) = \frac{3x+9}{5}$$
 and $g(x) = 6x-1$

14	(a)	Show that gf(2) is an integer	-r
17	(a)	onow that gitz) is an integer	7Ι.

 [2 marks]

14 (b)	Show that f	⁻¹ (8) is not ar	n integer.
--------	-------------	------------------------------------	------------

[2 marks]

15	H is inversely proportional to the cube root of L .		
	H=7 when $L=64$		
15 (a)	Work out the value of H when $L=2744$	[2 marks	

 $H = \underline{\hspace{1cm}}$

A room is kept at a constant temperature of 21°C for 6 hours.

The heating is then turned off and the room begins to cool.

Here is a sketch graph showing the temperature, $y^{\circ}C$, of the room at time x hours.

16 (a) Assume the equation of the curved part is $y = \frac{k}{r}$ where k is a constant.

Work out the value of y when x = 12

[2 marks]

y =			

16 (b)	In fact,
--------	----------

 $y = A \times \left(\frac{1}{3}\right)^{\frac{1}{6}x}$ where A is a **different** constant. the equation of the curved part is

How does this affect the value of y when x = 12?

Tick one box.

You must show working to support your answer.

[2 marks]

The value of y is greater than the answer to part (a).
The value of y is less than the answer to part (a).
The value of y is the same as the answer to part (a).